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What can one do with a black box?

input

.

Controller

output

Question: How should | design a controller?

collect data — identify model — design controller

“Why learn a model if we only care about control?” 1/30



Direct vs. Indirect Data-driven Control

Indirect data-driven control

v Quantify uncertainty + design
-
=i

robust controller
Y X Sys ID very expensive

X Sys ID seeks best model that fits
data...not best for control

Direct data-driven control

u Yy v Impressive recent theoretical &
“ Controller d practical advances
X Often requires a lot of data and
brute-force computation

o H-— e X Not suitable for real-time safety
critical system

2/30




Why direct data-driven control?

Question: When should one use direct data-driven control?
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Why direct data-driven control?

Question: When should one use direct data-driven control?

¢ First-principle models not conceivable (e.g.,
human-in-the-loop, biology)

* Models too complex for control design (e.g., fluids, building
automation)

¢ Thorough modelling too costly (e.g., robotics)

e Often easier to learn control policies directly from data
(e.g., PID)
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Outline

Data-Enabled Predictive Control: In the Shallows of the DeePC

1. DeePC (Basic Idea):

Jeremy Coulson  John Lygeros  Florian Dorfler

f et . Distributionally Robust Chance Constrained
2. Dlstrlbutlonally Data-enabled Predictive Control
Robust DeePC: Jermy Couson b Lygers P Do

Data-Enabled Predictive Control for Quadcopters

3. Application:

Ezzat Elokda | Jeremy Coulson* | Paul N. Beuchat | John Lygeros | Florian Dérfler
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Problem Statement

Consider the controllable LTI
system

{x(t +1) = Az(t) + Bu(t) t€ Zs
y(t) = Cx(t) + Duf(t),

where
z(t) € R" is the state
u(t) € R™ is the control input
y(t) € RP is the output

° A e R B e R"™™m (' e RPX"™ D e RP*™ gre unknown
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Problem Statement

Consider the controllable LTI
system

{x(t +1) = Az(t) + Bu(t) t€ Zs
y(t) = Cx(t) + Duf(t),

where
® z(t) € R" is the state
® u(t) € R™ is the control input
® y(t) € RP is the output
e AcR"™" BeR"™m™m (CcRP" D e RPX™ gre unknown
Goal: design controller to
¢ track a reference output trajectory
r=(ro,r1,...) € (RP)%20
¢ satisfy input/output constraints u(t) € &Y C R™,
y(t) €Y CRPVt

5/30



Behavioural System Theory

Jan Willems
Introduced behavioural system theory ~1979
“The behaviour is all there is”
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Behavioural System Theory

-

Jan Willems
Introduced behavioural system theory ~1979
“The behaviour is all there is”

e LTI system defined by its “behaviour”
B C (Rerp)ZZo

® % is subspace containing trajectories
(U, y) = (u07 Yo, U1, Y1, - - - )
¢ The set of truncated trajectories is

PBr = restriction of Btot € [0,T].

6/30



Persistency of Excitation

Definition

Let T', Tt € Z>; such that T > T;. The signal

u = col(uy, ...,ur) € RT™ is persistently exciting of order 7;
if the Hankel matrix

U U2 o UT-Te+1
Uz u3 T UT-Ti+2
A
A (u) = :
Uty UTp4+1 - ur

is of full row rank.

“Signal is sufficiently rich and long (7" — 7t + 1 > Tym)”
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Fundamental Lemma

Lemma (Fundamental Lemma, Willems, et al, 2005)

LetT,T; € Z>,. Consider
e controllable discrete-time LTI system %
¢ Data trajectory col(a, ) € SBr such that
® { persistently exciting of order Tt + n (n is #states)

Then
colspan <<%ﬂTf (;)) = Br;.

“All trajectories can be reconstructed from finitely many,
sufficiently rich previous trajectories”
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Fundamental Lemma

Lemma (Fundamental Lemma, Willems, et al, 2005)

LetT,T; € Z>,. Consider
e controllable discrete-time LTI system %
¢ Data trajectory col(a, ) € SBr such that
® { persistently exciting of order Tt + n (n is #states)

Then
colspan <%”Tf <;>> = Br;.

“All trajectories can be reconstructed from finitely many,
sufficiently rich previous trajectories”

Idea: The Hankel matrix using raw data can serve as a
predictive model!
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Hankel Matrix Example

Assume col(a, 9) = (41,91, ..., U7, gr) € Br and 4 persistently
exciting of order Tt + n.
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Hankel Matrix Example

Assume col(4, 9) = (a1, 91, ..., Up, ) € B and 4 persistently
exciting of order Tt + n.

e Given input u = (uy,...,ur,), predict output
y=(y1,---,yn)
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Hankel Matrix Example

Assume col(4, 9) = (a1, 91, ..., Up, ) € B and 4 persistently
exciting of order Tt + n.

e Given input u = (uy,...,ur,), predict output
y=(y1,---,yn)

Issue: Predicted output not unique!

9/30



Hankel Matrix Example ctd.

Assume col(i, §) = (G1, 91, - .., Up, §7) € B and 4 persistently
exciting of order Tini + Tt + n and (aini, Jini) € B,

A

Uini
a\ | Uini
%Tini""Tf (Q) g = u
Yy
e Giveninput u = (uy,...,ur), predict output

y=(y1,---,yn)
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A Tfini }set initial condition
u e
‘%0Tini+Tf (A> g= Yini
Y prediction
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Hankel Matrix Example ctd.

Assume col(i, §) = (G1, 91, - .., Up, §7) € B and 4 persistently
exciting of order Tini + Tt + n and (aini, Jini) € B,

A Tfini }set initial condition
u e
%Tini‘i'Tf <A> g= Yini
Y prediction
Yy
e Giveninput u = (uy,...,ur), predict output

y=(Yy1,---, Y1)

When Ti,; > lag of system, the predicted output is unique’.

'I. Markovsky and P. Rapisarda, 2008
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Model Predictive Control

Goal: design controller to
e track a reference output trajectory
r=(ro,r1,...) € (RP)%>0
¢ satisfy input/output constraints u(t) € &/ C R™,
y(t) € Y CRP VL
When state space model (i.e., A, B, C, D) known:
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Model Predictive Control

Goal: design controller to
e track a reference output trajectory

r=(rp,r1,..

) € (RP)Z20

¢ satisfy input/output constraints u(t) € &/ C R™,
y(t) e Y CRPVE
When state space model (i.e., A, B, C, D) known:

MPC:

minimize

u,x,y

subject to

Ty—1

> (s = rersliy + lurllz)

k=0
Tp+1 = Azxy + Buyg, Yk € {0,..., Tt — 1},
yr = Cxi + Dug, Yk € {0,..., Ty — 1},
Zr+1 = Azxk + Buk, Yk € {-Tni,...,—1},
yr = Cxp + Dug, Yk € {—Tini,...,—1},
ur €U, Yk € {0,...,Ts — 1},

yr €Y, Vk € {0,...,Tr — 1}.
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Data-enabled Predictive Control Algorithm

Goal: design controller to
e track a reference output trajectory
r=(ro,r1,...) € (RP)%>0
¢ satisfy input/output constraints u(t) € &/ C R™,
y(t) € Y CRP VL
When state space model (i.e., A, B, C, D) unknown:
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Data-enabled Predictive Control Algorithm

Goal: design controller to
e track a reference output trajectory

r=(ro,r1,..

) € (RP)Z20

¢ satisfy input/output constraints u(t) € &/ C R™,

y(t) €Y CRP WV

When state space model (i.e., A, B, C, D) unknown:

DeePC:

minimize
g,u,y

subject to

Ty—

[un

2 2
(llyr = resrllyy + lluxlly)
k=0
Uini

ﬁ g.n.
jfTinH‘Tf <g> 9= ;LI 5

]
ur €U, Yk €1{0,...,Tf — 1},
yr €Y, Vk € {0,..., Tt — 1}.
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What'’s the difference?

MPC:

minimize
u,r,y

subject to

Tg—1

2 2
> ([for = rese]]] + sl

Q
k=0
Tpy1 = Az + Buy, Yk € {0,..., Ty — 1},
ygp = Cxy + Duy, Vk € {0,..., Ty — 1},
Tpy1 = Azg + Buy, Vk € {—Tj, ..., =1},
yr = Cxp + Duy, Yk € {~Tjnj, ..., —1},
up €U, Vk € {0,..., Ty — 1},
yp €V, Yk € {0,..., Tf — 1}.

DeePC:

minimize
g u,y

subject to

Te—1

> (Hyk —renel|), + ||ukné)

k=0

. Uini
., a _ | Yini
ﬂﬂni+Tf (1]) 9= u ’

Yy
up €U, Vk € {0,..., Ty — 1},
vk €Y, Vk € {0,...,Tf — 1}.

Predictive model and state estimation in MPC is replaced
by raw data in a Hankel matrix in DeePC.

13/30



Consistent for Deterministic LTI systems

Theorem

Consider a controllable LTI system Corollary
and the DeePC and MPC optimization
problems with persistently exciting
data of order Tin; + 1t + n. Then the trajectories coincide
feasible sets of DeePC and MPC ’
coincide.

IfU, Y are convex, then
closed-loop

i
| X b A A A r A A A N on s
. HMWWWNW*»WWWW#VV
H

A

“MPC and DeePC have equivalent closed loop behaviour”
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Beyond Deterministic LTI

What about noisy data?
...Nonlinear systems?
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Beyond Deterministic LTI

What about noisy data?
...Nonlinear systems?

We need a robustified approach!
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Regularizations

minimize
g,u,y,0y

1. Online data (iin;, 9ini) inconsistent with data in Hankel matrix

2. Offline data J77, 11, ; noisy — data matrix full rank
(can predict anything)
Te—1
> (Hyk —repel|), + le\é) + Ayloyllp + Aglgll

Ujni 0
. p I Gt
subjectto 1 4Ty (;’) g= ygn + {TO!/ ,
Y 0

up €U, Yk € {0,..., Ty — 1},
yp €Y, Vk e {0,..., Ty — 1}.
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Regularizations

1. Online data (iin;, 9ini) inconsistent with data in Hankel matrix
U

g noisy — data matrix full rank

2. Offline data J77, 11,
(can predict anything)

T—1

2
N 2
minimize E (Hyk — e+ HukHR) +2yllogllp + Agllglh
9,U,Y, 0y Q
Yy
k=0
Winj 0
. P [ _ Yini oy
subjectto & 4y (y) g= o + f ,
Y 0
up €U, Vk € {0,..., Ty — 1},
yp €Y, Vk e {0,..., Ty — 1}.

1-norm promotes sparsity <= sparse selection of motion primitives
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Regularizations

1. Online data (iin;, 9ini) inconsistent with data in Hankel matrix

2. Offline data J77, 11, g noisy = data matrix full rank
(can predict anything)
Cost
Ty—1 § o
P 2 &)
mnmze | (Hyk —repel|), + Hukn?{) Faloalls +2sloly O
k=0
A s . e
subjectto  Sr, i1y (Z) g= yL”i + UO"/ ) o Cost
Y Y ;
up €U, Vk € {0,..., T — 1}, e
yp €V, Yk e {0,...,T; — 1}. éz

9
1-norm promotes sparsity <= sparse selection of motion primitives
16/30



Nonlinear Systems

Idea: Can lift nonlinear system to large/infinite-dimensional
bi-/linear system (e.g., Carleman, Koopman, Volterra)

Build larger Hankel matrix and let 1-norm regularization pick
features

UTy+Ty  Ulin+Tr+1
Y Y2

YTini+Te  YTn+Te+1

more data = more columns
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Nonlinear Case Study

Setup: nonlinear stochastic quadcopter model with full state info
DeePC: Nominal DeePC + ¢, slack + 1-norm regularization for g
+ more columns

—XDeePc
e —YbeePc
ZDeePC

Xret

Vet

Y4
ref
-- Constraints
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Real-world Experiment
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Heuristics to Theorems

Why does it work so well?
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Heuristics to Theorems

Why does it work so well?

Time for some theory!
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Distributionally Robust DeePC

DeePC + ¢, slack:
Abstracted DeePC:

Tp—1 R
minimize E Furv) + Aylloyllp mlnlrglze c(&,9)
g,u,y ge
k=0 o
Ujni 0 WEE = ﬁnni+Tf (9) and
subjectto  n ¢y (Z) g= @i?i + ). )
v Q e= {g Hr 41 () g = (u’:{") ,u € UTf} .
up €U, VE € {0, ..., Ty — 1}.

¢ ¢is arandom variable distributed according to unknown
distribution P

e ¢ is a particular measurement of random variable ¢

We use * to denote measured (thus possibly noisy) data.
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Abstracted DeePC

A~

mlnlemlze c(&,9) = m|n|m|ze EA[c(g 9)]
g

where P = oz s the empirical distribution of £ (approximation
for true data generating distribution P).

22/30



Abstracted DeePC

mlrglerglze c(g,g):mlglerglze Esle(€; 9)]

) |

where P = oz s the empirical distribution of £ (approximation
for true data generating distribution P).

Solution has poor out-of-sample performance Ep[c(¢, g*)]
where P is true distribution of £ and ¢* solution to above.
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Abstracted DeePC

minimize (€, g) = m|n|m|ze Eslc(¢, 9)]
g

where P = oz s the empirical distribution of £ (approximation
for true data generating distribution P).

Solution has poor out-of-sample performance Ep[c(¢, g*)]
where P is true distribution of £ and ¢* solution to above.

Distributionally Robust DeePC
inf sup Eqle(¢, 9)]
9<C Qe . (P)

where the ambiguity set is the
Wasserstein ball

B.(P) = {Q L

(de) < }
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Theorem

Under minor technical conditions

inf sup Eqle(é,9)] = inf  c(€,9) + eLip(c)llg-
QEGQEB (/F;) 9geG@  ~—— —_———
¢ nominal DeePC regularization

Hence,

p-norm robustness <= g¢-norm regularization
1,1 _
where >te= 1.
Note that the Wasserstein ball

contains more than just LTI
systems with additive noise.

Proof uses methods from [Mohajerin Esfahani and Kuhn, 2018].
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Further Improvements?

1. How to leverage more data?
2. How to include output constraints?
3. Am | stuck with the Hankel matrix structure?
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Leveraging more data

* Collect many Hankel matrices £ = %T(i:i)JrTf(g(i)),
ie{l,...,N}. R

¢ Result is “better” empirical distribution P = % Zfil 5@.).

e Use measure concentration to decrease size of B.(P).
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Leveraging more data

* Collect many Hankel matrices £ = %T(i:i)JrTf(g(i)),
ie{l,...,N}. R

¢ Result is “better” empirical distribution P = % Zfil 5@.).

e Use measure concentration to decrease size of B.(P).

Theorem
Let e ~ L'/ ™% Then with high
prObablllty 200 Tracking Error vs. €
Ep[c(¢, 9)] S,
———— 3
true out-of-sample performance Ew -
1 N . — ]'\> - 110
< N Z C(g (1)7 g) +€L|p(€) || gH* Wasserstein ball radius ¢
i=1

sample average cost
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Distributionally Robust Chance Constraints

e Want future trajectories to be constrained in
Y =A{y|h(y) <0}
¢ Relax to chance-constraint
P(h(y) <0)>1—a < VaR] _(h(y)
e Convex relaxation CVaR?__ (h(y)) < 0.

) <

Distributionally Robust CVaR Constraint

sup_ CVaRY,(h(y))
QeB.(P)

<= sample average constraint + regularization + tightening

0.2

X)

CVaR}_,(X) -

.
-10 -8 -6 -4 -2 0 2 4 6 8 10 26/30



New Data Structure — Page matrix

Hankel Matrix Page Matrix
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New Data Structure — Page matrix

Hankel Matrix Page Matrix

ul ur, 41
Y1 Y2 Y1 YL+1

u2 UL42

%(u’ y) = y.z Y3 ,@L (u7 y) _ y'2 YL+2

Frequency

Distrbutionally robust analysis is tight for Page matrix!

Tracking Error Distributions Tracking Error vs. Number of Columns
60

mPage — Page
[ Hankel — Hankel

a

5
=)
=
Pas
£
g 40
&
35
30
50 100 150 200 150 200 250 300 350 400 450 500
Tracking Error Number of Columns in Data Matrix
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Putting it all together

Setup: Nonlinear noisy quadcopter model

Trajectory of Quadcopter

Solution ------------------------ Y

P

DeePC o et

+ distributionally robust objective = *s - Pyef
: i P, re
+ CVaR constraints o O ints
-0.5

+ leverage moredata 0 e
+ Page matrix ©oE g e

Meters
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Summary

Recap:
e Matrix of time-series data is a predictive model
¢ DeePC equivalent to MPC for deterministic LTI systems

¢ regularizations to DeePC provide distributional
robustness to extend beyond deterministic LTI setting

Future work:
¢ Fundamental Lemma for nonlinear/stochastic systems
¢ Online and adaptive extensions to DeePC
¢ Connections of DeePC to ID for control
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Thanks!

griivalich 1 Jeremy Coulson
LABORATORY jcoulson@ethz.ch


mailto:jcoulson@ethz.ch

ETH:irich

Appendix



DeePC vs MPC

DeePC: ¢*-regularization for g and o, slack
MPC: system ID (prediction error method) + MPC

DeePC Cost
30F T - -
—X mDeePC
DeePC w5l [=System 1D + MPC
—Ybeerc °
2 s
DeePC Boop
- x g
ref Sl
Vret 5
Zot g 10F
- Constraints 5
S Cost 107
MPC » int Violations
X [mDeePC
—*mpc o | [=mSystem ID + MPC|
5
Yvpc g
2 3
MPC £
Kref 5
3
Vet 5

ref
- Constraints

0 2 4 6 8 10 12 14 16 18 20
Duration constraints violated

Direct better than indirect?

— still exploring 3030
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