

Regularized & Distributionally Robust Data-enabled Predictive Control Jeremy Coulson, John Lygeros, Florian Dörfler

Learning Sparse Models Workshop

Question: How should I design a controller?

Question: How should I design a controller?

collect data

Question: How should I design a controller?

 $\textbf{collect data} \longrightarrow \textbf{identify model}$

Question: How should I design a controller?

collect data \longrightarrow identify model \longrightarrow design controller

Question: How should I design a controller?

collect data \longrightarrow identify model \longrightarrow design controller

"Why learn a model if we only care about control?"

Direct vs. Indirect Data-driven Control

Indirect data-driven control

- Quantify uncertainty + design robust controller
- X Sys ID very expensive
- X Sys ID seeks best model that fits data...not best for control

Direct data-driven control

- Impressive recent theoretical & practical advances
- Øften requires a lot of data and brute-force computation
- X Not suitable for real-time safety critical system

Why direct data-driven control?

Question: When should one use direct data-driven control?

Why direct data-driven control?

Question: When should one use direct data-driven control?

- First-principle models **not conceivable** (e.g., human-in-the-loop, biology)
- Models too complex for control design (e.g., fluids, building automation)
- Thorough modelling too costly (e.g., robotics)
- Often easier to learn control policies directly from data (e.g., PID)

Outline

1. DeePC (Basic Idea):

Data-Enabled Predictive Control: In the Shallows of the DeePC

Jeremy Coulson John Lygeros Florian Dörfler

2. Distributionally Robust DeePC:

Distributionally Robust Chance Constrained Data-enabled Predictive Control

Jeremy Coulson John Lygeros Florian Dörfler

3. Application:

Data-Enabled Predictive Control for Quadcopters

Ezzat Elokda | Jeremy Coulson* | Paul N. Beuchat | John Lygeros | Florian Dörfler

Problem Statement

Consider the **controllable** LTI system

$$\begin{cases} x(t+1) = Ax(t) + Bu(t) & t \in \mathbb{Z}_{\geq 0} \\ y(t) = Cx(t) + Du(t), \end{cases}$$

where

- $x(t) \in \mathbb{R}^n$ is the state
- $u(t) \in \mathbb{R}^m$ is the control input
- $y(t) \in \mathbb{R}^p$ is the **output**
- $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$ are unknown

Problem Statement

Consider the **controllable** LTI system

$$\begin{cases} x(t+1) = Ax(t) + Bu(t) & t \in \mathbb{Z}_{\geq 0} \\ y(t) = Cx(t) + Du(t), \end{cases}$$

where

- $x(t) \in \mathbb{R}^n$ is the state
- $u(t) \in \mathbb{R}^m$ is the control input
- $y(t) \in \mathbb{R}^p$ is the **output**
- $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$ are unknown

Goal: design controller to

• track a reference output trajectory

$$r = (r_0, r_1, \dots) \in (\mathbb{R}^p)^{\mathbb{Z}_{\geq 0}}$$

• satisfy input/output constraints $u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$, $y(t) \in \mathcal{Y} \subseteq \mathbb{R}^p \ \forall t$

Behavioural System Theory

Jan Willems

Introduced behavioural system theory ${\sim}1979$ "The behaviour is all there is"

Behavioural System Theory

Jan Willems

Introduced behavioural system theory ${\sim}1979$ "The behaviour is all there is"

• LTI system defined by its "behaviour"

$$\mathscr{B} \subseteq (\mathbb{R}^{m+p})^{\mathbb{Z}_{\geq 0}}$$

- \mathscr{B} is subspace containing trajectories $(u, y) = (u_0, y_0, u_1, y_1, \dots).$
- The set of truncated trajectories is

 \mathscr{B}_T = restriction of \mathscr{B} to $t \in [0, T]$.

Persistency of Excitation

Definition

Let $T, T_f \in \mathbb{Z}_{\geq 1}$ such that $T \geq T_f$. The signal $u = \operatorname{col}(u_1, \ldots, u_T) \in \mathbb{R}^{Tm}$ is persistently exciting of order T_f if the Hankel matrix

$$\mathscr{H}_{T_{\rm f}}(u) \triangleq \begin{pmatrix} u_1 & u_2 & \cdots & u_{T-T_{\rm f}+1} \\ u_2 & u_3 & \cdots & u_{T-T_{\rm f}+2} \\ \vdots & \vdots & \ddots & \vdots \\ u_{T_{\rm f}} & u_{T_{\rm f}+1} & \cdots & u_T \end{pmatrix}$$

is of full row rank.

"Signal is sufficiently rich and long ($T - T_{\rm f} + 1 \ge T_{\rm f}m$)"

Fundamental Lemma

Lemma (Fundamental Lemma, Willems, et al, 2005)

Let $T, T_f \in \mathbb{Z}_{\geq 1}$. Consider

- controllable discrete-time LTI system *B*
- Data trajectory $col(\hat{u}, \hat{y}) \in \mathscr{B}_T$ such that
- \hat{u} persistently exciting of order $T_{\rm f} + n$ (n is #states)

Then

$$\operatorname{colspan}\left(\mathscr{H}_{T_{\mathrm{f}}}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix}\right)=\mathscr{B}_{T_{\mathrm{f}}}.$$

"All trajectories can be reconstructed from finitely many, sufficiently rich previous trajectories"

Fundamental Lemma

Lemma (Fundamental Lemma, Willems, et al, 2005)

Let $T, T_f \in \mathbb{Z}_{\geq 1}$. Consider

- controllable discrete-time LTI system *B*
- Data trajectory $col(\hat{u}, \hat{y}) \in \mathscr{B}_T$ such that
- \hat{u} persistently exciting of order $T_{\rm f} + n$ (n is #states)

Then

$$\operatorname{colspan}\left(\mathscr{H}_{T_{\mathrm{f}}}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix}\right)=\mathscr{B}_{T_{\mathrm{f}}}.$$

"All trajectories can be reconstructed from finitely many, sufficiently rich previous trajectories"

Idea: The Hankel matrix using raw data can serve as a predictive model!

$$\mathscr{H}_{T_{\mathrm{f}}}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix}$$

$$\mathscr{H}_{T_{\mathrm{f}}}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix}g$$

$$\mathscr{H}_{T_{\mathrm{f}}}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix}g=\begin{pmatrix}u\\y\end{pmatrix}$$

Assume $col(\hat{u}, \hat{y}) = (\hat{u}_1, \hat{y}_1, \dots, \hat{u}_T, \hat{y}_T) \in \mathscr{B}_T$ and \hat{u} persistently exciting of order $T_f + n$.

$$\mathscr{H}_{T_{\mathrm{f}}} \begin{pmatrix} \hat{u} \\ \hat{y} \end{pmatrix} g = \begin{pmatrix} u \\ y \end{pmatrix}$$

• Given input $u = (u_1, \dots, u_{T_f})$, predict output $y = (y_1, \dots, y_{T_f})$

Assume $col(\hat{u}, \hat{y}) = (\hat{u}_1, \hat{y}_1, \dots, \hat{u}_T, \hat{y}_T) \in \mathscr{B}_T$ and \hat{u} persistently exciting of order $T_f + n$.

$$\mathscr{H}_{T_{\mathrm{f}}} \begin{pmatrix} \hat{u} \\ \hat{y} \end{pmatrix} g = \begin{pmatrix} u \\ y \end{pmatrix}$$

• Given input $u = (u_1, \dots, u_{T_f})$, predict output $y = (y_1, \dots, y_{T_f})$

Issue: Predicted output not unique!

Hankel Matrix Example ctd.

Assume $\operatorname{col}(\hat{u}, \hat{y}) = (\hat{u}_1, \hat{y}_1, \dots, \hat{u}_T, \hat{y}_T) \in \mathscr{B}_T$ and \hat{u} persistently exciting of order $T_{\mathsf{ini}} + T_{\mathrm{f}} + n$ and $(\hat{u}_{\mathsf{ini}}, \hat{y}_{\mathsf{ini}}) \in \mathscr{B}_{T_{\mathsf{ini}}}$.

$$\mathscr{H}_{T_{\mathsf{ini}}+T_{\mathrm{f}}}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix}g=\begin{pmatrix}\hat{u}_{\mathsf{ini}}\\\hat{y}_{\mathsf{ini}}\\u\\y\end{pmatrix}$$

• Given input $u = (u_1, \dots, u_{T_f})$, predict output $y = (y_1, \dots, y_{T_f})$

Hankel Matrix Example ctd.

Assume $\operatorname{col}(\hat{u}, \hat{y}) = (\hat{u}_1, \hat{y}_1, \dots, \hat{u}_T, \hat{y}_T) \in \mathscr{B}_T$ and \hat{u} persistently exciting of order $T_{\mathsf{ini}} + T_{\mathrm{f}} + n$ and $(\hat{u}_{\mathsf{ini}}, \hat{y}_{\mathsf{ini}}) \in \mathscr{B}_{T_{\mathsf{ini}}}$.

$$\mathscr{H}_{T_{\mathsf{ini}}+T_{\mathrm{f}}}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix}g=\begin{pmatrix}\hat{u}_{\mathsf{ini}}\\\hat{y}_{\mathsf{ini}}\\u\\y\end{pmatrix}
brace$$
prediction

• Given input $u = (u_1, \dots, u_{T_f})$, predict output $y = (y_1, \dots, y_{T_f})$

Hankel Matrix Example ctd.

Assume $\operatorname{col}(\hat{u}, \hat{y}) = (\hat{u}_1, \hat{y}_1, \dots, \hat{u}_T, \hat{y}_T) \in \mathscr{B}_T$ and \hat{u} persistently exciting of order $T_{\mathsf{ini}} + T_{\mathrm{f}} + n$ and $(\hat{u}_{\mathsf{ini}}, \hat{y}_{\mathsf{ini}}) \in \mathscr{B}_{T_{\mathsf{ini}}}$.

$$\mathscr{H}_{T_{\mathsf{ini}}+T_{\mathrm{f}}}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix}g=\begin{pmatrix}\hat{u}_{\mathsf{ini}}\\\hat{y}_{\mathsf{ini}}\\u\\y\end{pmatrix}
brace$$
prediction

• Given input $u = (u_1, \dots, u_{T_f})$, predict output $y = (y_1, \dots, y_{T_f})$

When $T_{ini} \ge lag$ of system, the predicted output is **unique**¹.

¹I. Markovsky and P. Rapisarda, 2008

Model Predictive Control

Goal: design controller to

- track a reference output trajectory
 - $r = (r_0, r_1, \dots) \in (\mathbb{R}^p)^{\mathbb{Z}_{\geq 0}}$
- satisfy input/output constraints $u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$, $y(t) \in \mathcal{Y} \subseteq \mathbb{R}^p \ \forall t$

When state space model (i.e., A, B, C, D) known:

Model Predictive Control

Goal: design controller to

- **track** a reference output trajectory $r = (r_0, r_1, ...) \in (\mathbb{R}^p)^{\mathbb{Z} \ge 0}$
- satisfy input/output constraints $u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$, $y(t) \in \mathcal{Y} \subseteq \mathbb{R}^p \ \forall t$

When state space model (i.e., A, B, C, D) known: MPC:

$$\begin{array}{ll} \underset{u,x,y}{\text{minimize}} & \sum_{k=0}^{T_{\mathrm{f}}-1} \left(\|y_{k}-r_{t+k}\|_{Q}^{2} + \|u_{k}\|_{R}^{2} \right) \\ \text{subject to} & x_{k+1} = Ax_{k} + Bu_{k}, \ \forall k \in \{0,\ldots,T_{\mathrm{f}}-1\}, \\ & y_{k} = Cx_{k} + Du_{k}, \ \forall k \in \{0,\ldots,T_{\mathrm{f}}-1\}, \\ & x_{k+1} = Ax_{k} + Bu_{k}, \ \forall k \in \{-T_{\mathrm{ini}},\ldots,-1\}, \\ & y_{k} = Cx_{k} + Du_{k}, \ \forall k \in \{-T_{\mathrm{ini}},\ldots,-1\}, \\ & u_{k} \in \mathcal{U}, \ \forall k \in \{0,\ldots,T_{\mathrm{f}}-1\}, \\ & y_{k} \in \mathcal{Y}, \ \forall k \in \{0,\ldots,T_{\mathrm{f}}-1\}. \end{array}$$

Data-enabled Predictive Control Algorithm

Goal: design controller to

- track a reference output trajectory
 - $r = (r_0, r_1, \dots) \in (\mathbb{R}^p)^{\mathbb{Z}_{\geq 0}}$
- satisfy input/output constraints $u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$, $y(t) \in \mathcal{Y} \subseteq \mathbb{R}^p \ \forall t$

When state space model (i.e., A, B, C, D) unknown:

Data-enabled Predictive Control Algorithm

Goal: design controller to

track a reference output trajectory

$$r = (r_0, r_1, \dots) \in (\mathbb{R}^p)^{\mathbb{Z}_{\geq 0}}$$

• satisfy input/output constraints $u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$, $y(t) \in \mathcal{Y} \subseteq \mathbb{R}^p \ \forall t$

When state space model (i.e., A, B, C, D) unknown: **DeePC**:

$$\begin{array}{ll} \underset{g,u,y}{\text{minimize}} & \sum_{k=0}^{T_{\mathrm{f}}-1} \left(\|y_{k}-r_{t+k}\|_{Q}^{2} + \|u_{k}\|_{R}^{2} \right) \\ \text{subject to} & \mathscr{H}_{T_{\mathrm{ini}}+T_{\mathrm{f}}} \begin{pmatrix} \hat{u} \\ \hat{y} \end{pmatrix} g = \begin{pmatrix} \hat{u}_{\mathrm{ini}} \\ \hat{y}_{\mathrm{ini}} \\ u \\ y \end{pmatrix}, \\ & u_{k} \in \mathcal{U}, \ \forall k \in \{0,\ldots,T_{\mathrm{f}}-1\}, \\ & y_{k} \in \mathcal{Y}, \ \forall k \in \{0,\ldots,T_{\mathrm{f}}-1\}. \end{array}$$

What's the difference?

MPC:

minimize

$$\sum_{y=1}^{T_{f}-1} \left(\left\| y_{k} - r_{t+k} \right\|_{Q}^{2} + \left\| u_{k} \right\|_{R}^{2} \right)$$

 $\begin{array}{l} \text{subject to} \quad x_{k+1} = Ax_k + Bu_k, \ \forall k \in \{0, \ldots, T_{\mathrm{f}} - 1\}, \\ y_k = Cx_k + Du_k, \ \forall k \in \{0, \ldots, T_{\mathrm{f}} - 1\}, \\ x_{k+1} = Ax_k + Bu_k, \ \forall k \in \{-T_{\mathrm{ini}}, \ldots, -1\}, \\ y_k = Cx_k + Du_k, \ \forall k \in \{-T_{\mathrm{ini}}, \ldots, -1\}, \\ u_k \in \mathcal{U}, \ \forall k \in \{0, \ldots, T_{\mathrm{f}} - 1\}, \\ y_k \in \mathcal{Y}, \ \forall k \in \{0, \ldots, T_{\mathrm{f}} - 1\}. \end{array}$

DeePC:

$$\begin{array}{ll} \underset{g,u,y}{\text{minimize}} & \sum_{k=0}^{T_{\text{f}}-1} \left(\left\| y_{k} - r_{t+k} \right\|_{Q}^{2} + \left\| u_{k} \right\|_{R}^{2} \right) \\ \text{subject to} & \mathcal{H}_{T_{\text{ini}}+T_{\text{f}}} \left(\begin{matrix} \dot{u} \\ \dot{y} \end{matrix} \right) g = \left(\begin{matrix} \dot{u}_{\text{ini}} \\ \dot{y}_{\text{ini}} \\ u \\ y \end{matrix} \right), \\ & u_{k} \in \mathcal{U}, \ \forall k \in \{0, \dots, T_{\text{f}}-1\}, \\ & y_{k} \in \mathcal{Y}, \ \forall k \in \{0, \dots, T_{\text{f}}-1\}. \end{array}$$

Predictive model and state estimation in MPC is replaced by raw data in a Hankel matrix in DeePC.

Consistent for Deterministic LTI systems

Theorem

Consider a controllable LTI system and the DeePC and MPC optimization problems with persistently exciting data of order $T_{ini} + T_f + n$. Then the feasible sets of DeePC and MPC coincide.

Corollary

If U, Y are convex, then closed-loop trajectories coincide.

"MPC and DeePC have equivalent closed loop behaviour"

Beyond Deterministic LTI

What about noisy data? ...Nonlinear systems?

Beyond Deterministic LTI

What about noisy data? ...Nonlinear systems?

We need a robustified approach!

Regularizations

Online data (û_{ini}, ŷ_{ini}) inconsistent with data in Hankel matrix
 Offline data ℋ_{Tini+Tf} (û) noisy ⇒ data matrix full rank (can predict anything)

$$\begin{array}{l} \underset{g,u,y,\sigma_{\mathcal{Y}}}{\text{minimize}} & \sum_{k=0}^{T_{\mathrm{f}}-1} \left(\left\| y_{k} - r_{t+k} \right\|_{Q}^{2} + \left\| u_{k} \right\|_{R}^{2} \right) + \lambda_{\mathcal{Y}} \|\sigma_{\mathcal{Y}}\|_{p} + \lambda_{g} \|g\|_{1} \\ \\ \text{subject to} & \mathscr{H}_{\mathrm{Tini}} + T_{\mathrm{f}} \begin{pmatrix} \hat{u} \\ \hat{y} \end{pmatrix} g = \begin{pmatrix} \hat{u}_{\mathrm{ini}} \\ \hat{y}_{\mathrm{ini}} \\ u \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ \sigma_{\mathcal{Y}} \\ 0 \\ 0 \end{pmatrix}, \\ \\ u_{k} \in \mathcal{U}, \ \forall k \in \{0, \dots, T_{\mathrm{f}} - 1\}, \\ y_{k} \in \mathcal{Y}, \ \forall k \in \{0, \dots, T_{\mathrm{f}} - 1\}. \end{array}$$

Regularizations

Online data (û_{ini}, ŷ_{ini}) inconsistent with data in Hankel matrix
 Offline data ℋ_{Tini+Tf} (û) noisy ⇒ data matrix full rank (can predict anything)

$$\begin{array}{l} \underset{g,u,y,\sigma_{\mathcal{Y}}}{\text{minimize}} & \sum_{k=0}^{T_{\mathrm{f}}-1} \left(\left\| y_{k} - r_{t+k} \right\|_{Q}^{2} + \left\| u_{k} \right\|_{R}^{2} \right) + \lambda_{\mathcal{Y}} \|\sigma_{\mathcal{Y}}\|_{p} + \lambda_{g} \|g\|_{1} \\ \\ \text{subject to} & \mathscr{H}_{\mathrm{T_{ini}}+T_{\mathrm{f}}} \begin{pmatrix} \hat{u} \\ \hat{y} \end{pmatrix} g = \begin{pmatrix} \hat{u}_{\mathrm{ini}} \\ \hat{y}_{\mathrm{ini}} \\ u \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ \sigma_{\mathcal{Y}} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \\ \\ u_{k} \in \mathcal{U}, \ \forall k \in \{0, \ldots, T_{\mathrm{f}} - 1\}, \\ y_{k} \in \mathcal{Y}, \ \forall k \in \{0, \ldots, T_{\mathrm{f}} - 1\}. \end{array}$$

1-norm promotes sparsity \iff sparse selection of motion primitives

Regularizations

Online data (û_{ini}, ŷ_{ini}) inconsistent with data in Hankel matrix
 Offline data ℋ_{Tini+Tf} (û) noisy ⇒ data matrix full rank (can predict anything)

Cost

Nonlinear Systems

Idea: Can lift nonlinear system to large/infinite-dimensional bi-/linear system (e.g., Carleman, Koopman, Volterra)

Build larger Hankel matrix and let 1-norm regularization pick features

Nonlinear Case Study

Setup: nonlinear stochastic quadcopter model with full state info **DeePC:** Nominal DeePC + σ_y slack + 1-norm regularization for g + more columns

Real-world Experiment

Heuristics to Theorems

Why does it work so well?

Heuristics to Theorems

Why does it work so well?

Time for some theory!

Distributionally Robust DeePC

DeePC +
$$\sigma_y$$
 slack:
minimize $\sum_{g,u,y}^{T_f-1} f(u_k, y_k) + \lambda_y \|\sigma_y\|_p$
subject to $\mathscr{H}_{T_{ini}+T_f}\begin{pmatrix}\hat{u}\\\hat{y}\end{pmatrix} g = \begin{pmatrix}\hat{u}_{ini}\\\hat{y}_{ini}\\u\\y\end{pmatrix} + \begin{pmatrix}0\\\sigma_y\\0\\0\end{pmatrix},$
 $u_k \in \mathcal{U}, \ \forall k \in \{0, \dots, T_f-1\}.$

Abstracted DeePC:

$$\underset{g \in G}{\text{minimize}} \quad c(\hat{\xi},g) \\$$

with $\hat{\xi} = \mathscr{H}_{T_{\mathrm{ini}} + T_{\mathrm{f}}}(\hat{y})$ and

$$G = \left\{g \; \middle| \; \mathscr{H}_{T_{\mathsf{ini}} + T_{\mathsf{f}}}(\hat{u})g = \begin{pmatrix} \hat{u}_{\mathsf{ini}} \\ u \end{pmatrix}, u \in \mathcal{U}^{T_{\mathsf{f}}} \right\}.$$

- *ξ* is a random variable distributed according to unknown distribution
 P
- $\hat{\xi}$ is a particular **measurement** of random variable ξ

We use $\hat{\cdot}$ to denote measured (thus possibly noisy) data.

Abstracted DeePC

$$\underset{g \in G}{\operatorname{minimize}} \quad c(\widehat{\xi},g) = \underset{g \in G}{\operatorname{minimize}} \quad \mathbb{E}_{\widehat{\mathbb{P}}}[c(\xi,g)]$$

where $\widehat{\mathbb{P}} = \delta_{\hat{\xi}}$ is the **empirical distribution** of ξ (approximation for true data generating distribution \mathbb{P}).

Abstracted DeePC

$$\underset{g \in G}{\operatorname{minimize}} \quad c(\hat{\xi},g) = \underset{g \in G}{\operatorname{minimize}} \quad \mathbb{E}_{\widehat{\mathbb{P}}}[c(\xi,g)]$$

where $\widehat{\mathbb{P}} = \delta_{\hat{\xi}}$ is the **empirical distribution** of ξ (approximation for true data generating distribution \mathbb{P}).

Solution has poor **out-of-sample performance** $\mathbb{E}_{\mathbb{P}}[c(\xi, g^*)]$ where \mathbb{P} is true distribution of ξ and g^* solution to above.

Abstracted DeePC

$$\underset{g \in G}{\operatorname{minimize}} \quad c(\hat{\xi},g) = \underset{g \in G}{\operatorname{minimize}} \quad \mathbb{E}_{\widehat{\mathbb{P}}}[c(\xi,g)]$$

where $\widehat{\mathbb{P}} = \delta_{\hat{\xi}}$ is the **empirical distribution** of ξ (approximation for true data generating distribution \mathbb{P}).

Solution has poor **out-of-sample performance** $\mathbb{E}_{\mathbb{P}}[c(\xi, g^*)]$ where \mathbb{P} is true distribution of ξ and g^* solution to above.

Distributionally Robust DeePC

 $\inf_{g \in G} \sup_{Q \in B_{\epsilon}(\widehat{\mathbb{P}})} \mathbb{E}_{Q}[c(\xi,g)]$

where the ambiguity set is the Wasserstein ball

$$B_{\epsilon}(\widehat{\mathbb{P}}) = \left\{ Q \middle| \int_{\Xi} \|\xi - \widehat{\xi}\| Q(d\xi) \le \epsilon \right\}$$

Theorem

Under minor technical conditions

$$\inf_{g \in G} \sup_{Q \in B_{\epsilon}(\widehat{\mathbb{P}})} \mathbb{E}_{Q}[c(\xi,g)] = \inf_{g \in G} \underbrace{c(\widehat{\xi},g)}_{\text{nominal DeePC}} + \underbrace{\epsilon \text{Lip}(c) \|g\|_{*}}_{\text{regularization}}$$

Hence,

p-norm robustness $\iff q$ -norm regularization where $\frac{1}{p} + \frac{1}{q} = 1$. Note that the Wasserstein ball contains more than just LTI

systems with additive noise.

Proof uses methods from [Mohajerin Esfahani and Kuhn, 2018].

Further Improvements?

- 1. How to leverage more data?
- 2. How to include output constraints?
- 3. Am I stuck with the Hankel matrix structure?

Leveraging more data

- Collect many Hankel matrices $\hat{\xi}^{(i)} = \mathscr{H}_{T_{\mathsf{ini}}+T_{\mathsf{f}}}^{(i)}(\hat{y}^{(i)}), i \in \{1, \dots, N\}.$
- Result is "better" empirical distribution $\widehat{\mathbb{P}} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\hat{\xi}^{(i)}}$.
- Use measure concentration to decrease size of $B_{\epsilon}(\widehat{\mathbb{P}})$.

Leveraging more data

- Collect many Hankel matrices $\hat{\xi}^{(i)} = \mathscr{H}_{T_{\mathsf{ini}}+T_{\mathsf{f}}}^{(i)}(\hat{y}^{(i)}), i \in \{1, \dots, N\}.$
- Result is "better" empirical distribution $\widehat{\mathbb{P}} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\hat{\mathcal{E}}(i)}$.
- Use measure concentration to decrease size of $B_{\epsilon}(\widehat{\mathbb{P}})$.

Theorem

Let $\epsilon \sim \frac{1}{N}^{1/\dim\xi}$. Then with high probability

 $\underbrace{\mathbb{E}_{\mathbb{P}}[c(\xi,g)]}_{}$

true out-of-sample performance

$$\leq \underbrace{\frac{1}{N} \sum_{i=1}^{N} c(\hat{\xi}^{(i)}, g)}_{i=1} + \epsilon \operatorname{Lip}(c) \|g\|,$$

sample average cost

Distributionally Robust Chance Constraints

- Want future trajectories to be constrained in $\mathcal{Y} = \{y \mid h(y) \le 0\}.$
- Relax to chance-constraint $\mathbb{P}(h(y) \le 0) \ge 1 - \alpha \iff \mathsf{VaR}_{1-\alpha}^{\mathbb{P}}(h(y)) \le 0.$
- Convex relaxation $\text{CVaR}_{1-\alpha}^{\mathbb{P}}(h(y)) \leq 0.$

Distributionally Robust CVaR Constraint

$$\sup_{Q \in B_{\epsilon}(\widehat{\mathbb{P}})} \mathsf{CVaR}^Q_{1-\alpha}(h(y))$$

⇔ sample average constraint + regularization + tightening

New Data Structure – Page matrix

New Data Structure – Page matrix

Distrbutionally robust analysis is **tight** for Page matrix!

Putting it all together

Setup: Nonlinear noisy quadcopter model

Solution

DeePC

- + distributionally robust objective
- + CVaR constraints
- + leverage more data
- + Page matrix

Summary

Recap:

- · Matrix of time-series data is a predictive model
- DeePC equivalent to MPC for deterministic LTI systems
- regularizations to DeePC provide distributional robustness to extend beyond deterministic LTI setting

Future work:

- Fundamental Lemma for nonlinear/stochastic systems
- Online and adaptive extensions to DeePC
- Connections of DeePC to ID for control

Thanks!

Jeremy Coulson jcoulson@ethz.ch

Appendix

DeePC vs MPC

DeePC: ℓ^1 -regularization for g and σ_y slack **MPC:** system ID (prediction error method) + MPC

DeePC

Direct better than indirect? \rightarrow still exploring